Math 131B-1: Homework 3

Due: January 24, 2014

- 1. Read Apostol Sections 4.2-4, 2.12-13, 3.8-12.
- 2. Do problems 4.8, 4.9, 2.18, 2.19, 3.16, and 3.19 in Apostol.
- 3. Let (M, d') be any infinite set M with the discrete metric (i.e. d'(x, y) = 1 when $x \neq y$).
 - Show that (M, d') is complete.
 - Let S be any infinite subset of M. Show that S is closed and bounded, but not compact.
- 4. Two metrics with the same convergence properties. Consider the space \mathbb{R}^n with two metrics d_1 and d_2 defined as follows. If $\mathbf{x} = (x_1, \cdots, x_n)$ and $\mathbf{y} = (y_1, \cdots, y_n)$, we let

$$d_1(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
$$d_2(\mathbf{x}, \mathbf{y}) = \max\{|x_i - y_i| : 1 \le i \le n\}$$

That is, d_1 is the usual metric and d_2 is the "box metric."

- Let $\mathbf{x} \in \mathbb{R}^n$. Show that any ball $B_{(\mathbb{R}^n,d_1)}(\mathbf{x};r)$ contains a ball $B_{(\mathbb{R}^n,d_2)}(\mathbf{x};r')$ for some $r' \leq r$. Likewise show that any ball $B_{(\mathbb{R}^n,d_2)}(\mathbf{x};r)$ contains a ball $B_{(\mathbb{R}^n,d_1)}(\mathbf{x};r')$ for some $r' \leq r$. You may wish to start by drawing some examples in \mathbb{R}^2 .
- Show that $U \subset \mathbb{R}^n$ is open in (\mathbb{R}^n, d_1) if and only if it is an open in (\mathbb{R}^n, d_2) .
- Show that a sequence $\{\mathbf{x}^k\} = \{x_1^k, \dots, x_n^k\}$ converges to some \mathbf{x}^0 in (\mathbb{R}^n, d_1) if and only if it converges to \mathbf{x}^0 in (\mathbb{R}^n, d_2) . (Here superscripts denote place in the sequence and subscripts denote the Cartesian coordinates of a point.)
- Show that $\{\mathbf{x}^k\}$ is a Cauchy sequence in (\mathbb{R}^n, d_1) if and only if $\{\mathbf{x}_n\}$ is a Cauchy sequence in (\mathbb{R}^n, d_2) . Conclude that (\mathbb{R}^n, d_2) is complete.